α-Hydrogen Abstraction by •OH and •SH Radicals from Amino Acids and Their Peptide Derivatives.

نویسندگان

  • Bun Chan
  • Amir Karton
  • Christopher J Easton
  • Leo Radom
چکیده

We have used computational quantum chemistry to investigate the thermochemistry of α-hydrogen abstraction from the full set of amino acids normally found in proteins, as well as their peptide forms, by •OH and •SH radicals. These reactions, with their reasonable complexity in the electronic structure (at the α-carbon), are chosen as a consistent set of models for conducting a fairly robust assessment of theoretical procedures. Our benchmarking investigation shows that, in general, the performance for the various classes of theoretical methods improves in the order nonhybrid DFT → hybrid DFT → double-hybrid DFT → composite procedures. More specifically, we find that the DSD-PBE-P86 double-hybrid DFT procedure yields the best agreement with our high-level W1X-2 vibrationless barriers and reaction energies for this particular set of systems. A significant observation is that, when one considers relative instead of absolute values for the vibrationless barriers and reaction energies, even nonhybrid DFT procedures perform fairly well. To exploit this feature in a cost-effective manner, we have examined a number of multilayer schemes for the calculation of reaction energies and barriers for the abstraction reactions. We find that accurate values can be obtained when a "core" of glycine plus the abstracting radical is treated by DSD-PBE-P86, and the substituent effects are evaluated with M06-2X. Inspection of the set of calculated thermochemical data shows that the correlation between the free energy barriers and reaction free energies is strongest when the reactions are either endergonic or nearly thermoneutral.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Synthesis of New Benzimidazole and Pyrimidine Derivatives as α-glucosidase Inhibitor

In an endeavor to find a novel series of antihyperglycemic agents, new benzimidazole and pyrimidine derivatives were successfully synthesized efficiently in high yield with high purity, starting from amino acids in the presence of phosphorus oxychloride (POCl3). The synthesized compounds were identified by 1H-NMR, 13C-NMR, FT-IR spectroscopic techniques and elemental analysis. All products were...

متن کامل

Design and Synthesis of New Benzimidazole and Pyrimidine Derivatives as α-glucosidase Inhibitor

In an endeavor to find a novel series of antihyperglycemic agents, new benzimidazole and pyrimidine derivatives were successfully synthesized efficiently in high yield with high purity, starting from amino acids in the presence of phosphorus oxychloride (POCl3). The synthesized compounds were identified by 1H-NMR, 13C-NMR, FT-IR spectroscopic techniques and elemental analysis. All products were...

متن کامل

Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals.

A crown ether based, photolabile radical precursor which forms noncovalent complexes with peptides has been prepared. The peptide/precursor complexes can be electrosprayed, isolated in an ion trap, and then subjected to laser photolysis and collision induced dissociation to generate hydrogen deficient peptide radicals. It is demonstrated that these peptide radicals behave very differently from ...

متن کامل

Reactivity of aliphatic peptides toward hydroxyl radicals in aqueous solution.

増 田高廣,吉 原清隆,篠 原広行,近 藤正春:東 京都立大学理学部化学教室,東 京都世 田谷 区深 沢2-1-1〒158 Rate constants for the hydrogen abstraction reactions of hydroxyl radicals from aliphatic peptides and N-acetyl amino acids were determined by the p-nitrosodimethylaniline method in gamma-irradiated solutions. For peptides, enhancement of reactivity toward hydroxyl radicals was expected, because of disappearance of suppression by NH3...

متن کامل

Fragmentation processes of hydrogen-deficient peptide radicals in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.

The mechanism of in-source decay (ISD) in matrix-assisted laser desorption/ionization (MALDI) has been described. The MALDI-ISD with an oxidizing matrix is initiated by hydrogen abstraction from peptides to matrix molecules, leading to hydrogen-deficient peptide radicals. Subsequently, the C(α)-C and C(α)-H bonds are cleaved, forming the a•/x fragment pair and [M-2H], respectively. Those reacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2016